On Well-Covered Cartesian Products
نویسندگان
چکیده
منابع مشابه
On the Cartesian Product of Non Well-Covered Graphs
A graph is well-covered if every maximal independent set has the same cardinality, namely the vertex independence number. We answer a question of Topp and Volkmann [5] and prove that if the Cartesian product of two graphs is well-covered, then at least one of them must be well-covered.
متن کاملThe well-covered dimension of products of graphs
We discuss how to find the well-covered dimension of a graph that is the Cartesian product of paths, cycles, complete graphs, and other simple graphs. Also, a bound for the well-covered dimension of Kn × G is found, provided that G has a largest greedy independent decomposition of length c < n. Formulae to find the well-covered dimension of graphs obtained by vertex blowups on a known graph, an...
متن کاملGeneralized Shifts on Cartesian Products
It is proved that if E, F are infinite dimensional strictly convex Banach spaces totally incomparable in a restricted sense, then the Cartesian product E × F with the sum or sup norm does not admit a forward shift. As a corollary it is deduced that there are no backward or forward shifts on the Cartesian product `p1 × `p2 , 1 < p1 6= p2 < ∞, with the supremum norm thus settling a problem left o...
متن کاملLIGHTS OUT! on Cartesian Products
The game LIGHTS OUT! is played on a 5× 5 square grid of buttons; each button may be on or off. Pressing a button changes the on/off state of the light of the button pressed and of all its vertical and horizontal neighbors. Given an initial configuration of buttons that are on, the object of the game is to turn all the lights out. The game can be generalized to arbitrary graphs. In this paper, C...
متن کاملComplexity results on w-well-covered graphs
A graph G is well-covered if all its maximal independent sets are of the same cardinality. Assume that a weight function w is defined on its vertices. Then G is w-well-covered if all maximal independent sets are of the same weight. For every graph G, the set of weight functions w such that G is w-well-covered is a vector space, denoted WCW (G). Let B be a complete bipartite induced subgraph of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Graphs and Combinatorics
سال: 2018
ISSN: 0911-0119,1435-5914
DOI: 10.1007/s00373-018-1943-3